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Abstract: We present a simple example of a supersymmetric attractor mechanism in

the purely open string context of D-branes embedded in curved space-time. Our exam-

ple involves a class of D3-branes embedded in the 2-charge D1-D5 background of type

IIB whose worldvolume contains a 2-sphere. Turning on worldvolume fluxes, these branes

carry induced (p, q) string charges. Supersymmetric configurations display a flow of the

open string moduli towards an attractor solution independent of their asymptotics. The

equations governing this mechanism closely resemble the attractor flow equations for su-

persymmetric black holes in closed string theory. The BPS equations take the form of a

gradient flow and describe worldvolume solitons interpolating between an AdS2 geometry

where the two-sphere has collapsed, and an attractor solution with AdS2 × S2 geome-

try. In these limiting solutions, the preserved supersymmetry is enhanced from 4 to 8

supercharges. We also discuss the interpretation of our solutions as intersecting brane con-

figurations placed in the D1-D5 background, as well as the S-duality transformation to the

F1-NS5 background.
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1. Introduction

Extremal black holes in string theory have the property that scalar moduli fields are drawn

to fixed values at the horizon, which are determined by the charges carried by the black

hole. This property, which goes under the name of the attractor mechanism, has played an

important role in the understanding of black holes in string theory. It was first discovered

in the context of supersymmetric black holes in N = 2 theories [1 – 3] and more recently,
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has played a crucial role in the formulation of the OSV-conjecture [4] and has been shown

to apply to nonsupersymmetric black holes as well [5, 6]. The physics underlying the

mechanism is closely tied to the microscopic entropy carried by the black hole: since the

size of the horizon depends on the moduli, the latter should approach values determined

by the black hole charges and independent of their continuous asymptotic values.

General open-closed string duality considerations lead one to expect that an attrac-

tor mechanism should exist for open string moduli as well. In the low-energy limit, open

string dynamics is described by D-brane effective actions consisting of Born-Infeld and

Wess-Zumino terms, and closer inspection shows that an attractor mechanism could occur

in situations where both background and worldvolume gauge fields are turned on. For

example, consider a background containing p-branes producing a RR electric potential C

and a p + 2 brane probe wrapping a transverse 2-cycle with worldvolume magnetic field F

on this cycle. F is quantized and represents a lower D-brane charge. The term
∫

F ∧C in

the worldvolume action then represents a potential term for the scalar moduli that describe

the D-brane embedding, which is determined by the background and worldvolume charges

and which vanishes far away from the branes in the background. It is therefore reasonable

to expect that this interactions fixes a combination of open string moduli in terms of the

worldvolume and background charges in the vicinity of the branes in the background. This

example can then be dualized to more general situations. Such a mechanism is of course

closely related to the stabilization of open string moduli in situations with background and

worldvolume fluxes, which was explored in [7], and ultimately goes back to the observation

of flux stabilization of D-branes [8]. We should stress that, although the appearance of

an open string attractor mechanism seems plausible from the explicit form of the inter-

actions, it is not a priori clear whether there is an underlying explanation in terms of an

entropy contained in the open degrees of freedom. The open string attractor mechanism is

also expected to play an important role in the open string version of the OSV conjecture

proposed in [9], which could shed light on a possible entropic interpretation.

In this work, we will describe in detail an explicit example of such an open string

attractor mechanism. We will consider here only the supersymmetric version, although the

above considerations suggest that, just like in the closed string case, the mechanism is not

restricted to the supersymmetric context. Our main example will display a similarity to

the supersymmetric attractor mechanism in the closed string context that we find rather

striking and deserving of a better explanation than we will be able to give at present. Our

example involves a class of D3-brane probes in the ‘D1-D5 system’ (for a review, see [10]):

type IIB compactified on a fourfold M, with D5-branes wrapping M and coinciding with

D1-branes in a noncompact direction, forming a six-dimensional black string. We consider

D3-brane probes where the worldvolume geometry contains a two sphere whose radius is

allowed to vary over a 1+1 dimensional base. Such ‘spherically symmetric’ configurations

preserve an SU(2) subgroup of the target space isometry group. Turning on worldvolume

electric and magnetic fluxes along the base and the S2 fibre respectively, the configurations

carry fundamental and D-string charges and can be seen as ‘fuzzy’ (p, q) string expanded

to form a D3 brane through a form of the Myers effect. We derive a BPS bound on the

energy for D-brane configurations of this type, and show that the BPS-equations take the
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form of a gradient flow.

In the near-horizon limit, the background geometry becomes AdS3 ×S3, and the BPS

flow equations take a form that is remarkably similar to the attractor flow equations for

supersymmetric black holes. Fixed points of the flows correspond to extrema of a real

and positive function Z. General flows represent worldvolume solitons which interpolate

between a repulsive fixed point (a maximum of Z) at radial infinity, corresponding to an

AdS2 worldvolume geometry where the S2 has collapsed to zero size, and the attractive

fixed point (the minimum of Z) with AdS2 × S2 worldvolume geometry near r = 0. The

generic solution preserves 4 of the ‘Poincaré’ supersymmetries which extend to the full

asymptotically flat geometry, while for the fixed point solutions the supersymmetry is

enhanced to 8 supercharges. The solution at the attractive fixed point can also be obtained

by extremizing an effective potential or ‘entropy’ function [11], whose physical meaning is

less clear in this setting. In the open string metric, the radii of the AdS2 and S2 factors

become equal.

We will also investigate how our solutions extend to the full asymptotically flat back-

ground. This clarifies their interpretation as intersecting brane configurations placed in

the D1-D5 background. The general solution corresponds to a D3-brane transverse to the

D1-D5 string in the background, with a (p, q) string ‘spike’ running between the two. The

transverse distance between the D3-brane and the D1-D5 string becomes the asymptotic

value of a modulus in the near-horizon limit. The near horizon solutions with enhanced

supersymmetry and AdS2 or AdS2 × S2 geometry correspond to the limiting cases where

the transverse distance is taken to infinity or zero respectively. We also discuss how our

solutions transform under S-duality to the F1-NS5 background.

Let us also comment on related D-brane solutions that have appeared in the literature.

The AdS2 × S2 solution in the D1-D5 system was studied in [12 – 14]. The S-dual solution

in the F1-NS5 background was first introduced in [15] and has been studied extensively

in the literature, as sampling of which is [16]. Similar D-brane solutions also exist in

the Klebanov-Strassler [17] and Maldacena-Nunez [18] backgrounds in the form of a (p, q)

string expanding to form a D3-brane wrapping an S2 within the S3 [19]. Our solutions for

general flows are related to the ‘baryon vertex’ solutions and their generalizations [20 – 24].

This paper is organized as follows. In section 2, we introduce our brane configu-

rations and derive the BPS equations in both the asymptotically flat and near-horizon

backgrounds. In section 3, we study the attractor flow equations in the near-horizon geom-

etry and point out several analogies with supersymmetric black hole attractors. Section 4

discusses the extension of the brane solutions to the asymptotically flat spacetime and

clarifies their interpretation. In section 5 we discuss the supersymmetries preserved by our

solutions, which provides an alternative derivation of the BPS equations. We obtain the

S-dual brane solutions in the F1-NS5 background in section 6 and end with a discussion

in section 7. Appendix A clarifies the interpretation of our brane configurations as (p, q)

strings expanded to a fuzzy D3-brane through a form of the Myers effect, while appendix B

gives a derivation of the Killing spinors of the background in our conventions.
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2. Spherical D3-branes in the D1-D5 background

In this section we will set the stage for what is to be our main example of an open string

attractor. We will consider a class of BPS D3-branes in the D1-D5 background, whose

worldvolume geometry has an S2-fibre, and derive the equations for their embedding into

the background geometry from a bound on the energy. Of course, the resulting system can

also be derived from supersymmetry preservation, which we will do in section 5. We will

treat the full asymptotically flat background and the near-horizon limit simultaneously in

this section, providing a more detailed discussion for each case in later sections.

2.1 Background

We start by displaying our conventions for the D1-D5 background geometry. We consider

type IIB on M (M being either K3 or T 4), with Q5 D5-branes wrapped on M and Q1

D1-branes, running parallel along a noncompact direction x. We choose spherical polar

coordinates for the remaining transverse noncompact directions. The string metric, dilaton

and and RR three-form field strength are

ds2 = (H1H5)
−1/2(−dt2 + dx2) + (H1H5)

1/2(dr2 + r2dΩ2
3) +

(

H1

H5

)1/2

ds2
M

e−Φ =
1

g

(

H5

H1

)1/2

F (3) =
2r2

1

gr3H2
1

dt ∧ dx ∧ dr +
2r2

5

g
sin2 ψ sin θdψ ∧ dθ ∧ dφ (2.1)

where ds2
M is the Ricci-flat metric on M and dΩ2

3 is the metric on a unit S3. We choose

angular coordinates ψ, θ, φ on the S3:

dΩ2
3 = dψ2 + sin2 ψ(dθ2 + sin2 θdφ2). (2.2)

where ψ, θ ∈ [0, π], φ ∈ [0, 2π]. Note that the surfaces of constant ψ are 2-spheres of radius

sin ψ. The harmonic functions appearing in (2.1) are

H1,5 = a +
r2
1,5

r2
; r1 =

4π2α′

√
VM

√

gQ1α′, r5 =
√

gQ5α′

where a = 1 describes the asymptotically flat geometry while taking a = 0 gives the near-

horizon AdS3 × S3 × M geometry in the Poincaré patch. We will work in the following

gauge for the RR two-form:

C(2) =
1

gH1
dt ∧ dx +

r2
5

g
(ψ − sinψ cos ψ) sin θdθ ∧ dφ (2.3)

Note that there is a ‘Dirac string’ singularity at ψ = π, the invisibility of which imposes

quantization of Q5. The isometry group of the background is

ISO(1, 1) × SO(4) a = 1

SO(2, 2) × SO(4) a = 0
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Writing the SO(4) as SU(2) × SU(2), it is the diagonal SU(2) that acts transitively on

the two-spheres of constant ψ in (2.2). This subgroup will play an important role in what

follows.

2.2 Spherical D3-branes

We will now discuss a class of spherically symmetric D3-brane probes, carrying worldvolume

flux, in this background. We restrict our attention to branes whose worldvolume includes

an S2 embedded within S3, parametrized by θ and φ in (2.2), whose size we allow to

vary as a function of the other coordinates. In other words, the worldvolume geometry

is an S2 fibered over a 1+1 dimensional base. Such branes are ‘spherically symmetric’

in the sense that they preserve the SU(2) symmetry that acts on the S2 fibre. Such

configurations naturally generalize the known D3-brane solutions in the near-horizon region

with AdS2×S2 geometry, where the size of the S2 is constant [12 – 14]. The latter solutions

will play a special role in what follows, as they will play the role of the attractor geometry

with enhanced supersymmetry. We also allow general worldvolume gauge fields consistent

with the SU(2) symmetry. This restricts the worldvolume gauge field to have an electric

part Fel on the 1+1 dimensional base, a magnetic part Fmagn with legs on the S2 fiber,

and no mixed components.

The terms contributing to the worldvolume action are then

S = −µ3

∫

d4σe−Φ
√

− det(Ĝ + F ) + µ3

∫

Fel ∧ Ĉ(2)
magn + µ3

∫

Fmagn ∧ Ĉ
(2)
el (2.4)

where µ3 = 1/((2π)3α′2) is the D3-brane charge density and a ˆ denotes a pullback to the

worldvolume. Turning on Fel is necessary for stabilizing the contractible S2 on which the

brane is wrapped. With both Fel and Fmagn turned on, the brane becomes a source for

fundamental string charge (denoted by q) and D-string charge (denoted by p) as well. Let

us first discuss the quantization conditions following from this. Requiring that the source

terms for the electric NSNS and RR two-forms are properly quantized leads to1

q =
µ3

µ1

∫

S2

(⋆F̃el + Ĉ(2)
magn) (2.5)

p =
µ3

µ1

∫

S2

Fmagn. (2.6)

where ⋆ is the worldvolume Hodge star. We have defined a field F̃ as

µ3

√

− det ĜF̃ ab =
δSBI

δFab

The integrals are to be performed over the S2 fibre. The equation of motion and Bianchi

identity for the worldvolume gauge field imply that the charges are well-defined and inde-

pendent of the position on the base. The fact that the fundamental string charge q receives

1We are ignoring here curvature corrections to this formula, not to mention further subtleties in defining

charges in Ramond backgrounds. What we find is, however, consistent upon S-dualizing with the better

understood quantization conditions in pure Neveu-Schwarz backgrounds, as we will see in section 6.
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a Wess-Zumino contribution from the second term in (2.5) has an important consequence in

the near-horizon limit, where the S3 becomes noncontractible, namely that q takes values

in ZQ5
. The Wess-Zumino term is invariant under small gauge transformations of C(2),

but shifts by a multiple of Q5 under large gauge transformations. This is most easily seen

by writing it as µ3

µ1

∫

B F̂ (3) with B a 3-surface chosen such that δB = S2. Different choices

of B can differ by a map with nonzero winding number n around S3 which, using the

normalization of F (3) in (2.1), leads to an identification

q ∼ q + nQ5. (2.7)

As we shall illustrate in more detail in section 6, this quantization condition is simply

the S-dual version of the well-known D1-charge quantization in the background of NS5-

branes. As long as the size of the S2 fiber is sufficiently small, we expect our configurations

to describe (p, q) strings expanded to form a ‘fuzzy’ D3-brane through a form of the Myers

effect [25]. We will come back to this fuzzy sphere description in more detail shortly.

2.3 Action

We will now write out the action (2.4) in more detail, starting by fixing the worldvolume

reparametrization invariance. It will be convenient to choose the worldvolume coordinates

σa to coincide with (t, x, θ, φ). SU(2) invariance restricts the worldvolume scalars r, ψ and

the electric field strength Ftx to be independent of θ, φ, while Fθφ should be proportional

to sin θ. The quantization condition (2.6) leads to

Fθφ =
pµ1

4πµ3
sin θ (2.8)

where µ1 = 1/(2πα′) is the D1-brane charge density. Substituting into the action and

performing the θ, φ integrals leads to a consistent truncation of the original theory, resulting

in an effective 1+1 dimensional action for a string-like object:

S = −µ1

∫

dtdx

[

pe−Φ
√

gg̃ − Q5

π
Ftx(ψ − sinψ cos ψ) − p

gH1

]

(2.9)

where

g ≡ (H1H5)
−1

(

1 − H1H5(ṙ
2 + r2ψ̇2)

) (

1 + H1H5(r
′2 + r2ψ′2)

)

− F 2
tx

g̃ ≡ 1 +
r4H1H5 sin4 ψ

p2π2α′2
.

Here, we denoted the time derivative by a ˙ and the x derivative by a ′.

We expect such configurations to represent (p, q) strings expanded to form a ‘fuzzy’

D3-brane through a form of the Myers effect [25]. In an alternative description, they

should arise as noncommutative fuzzy sphere solutions in the worldvolume theory of p

coinciding D-strings, with the Υ(1) part of the worldvolume field strength turned to induce

the fundamental string charge q. From the analysis of [25] one expects the latter description
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(as a perturbative expansion in the matrix-valued coordinates) to be valid as long as the

S2 radius in string units is smaller than p, or

√
H1H5r

2 sin2 ψ

πα′
≪ p. (2.10)

In this limit, we can expand
√

g̃ in (2.9):

√

g̃ = 1 +
r4H1H5 sin4 ψ

2p2π2α′2
+ . . .

In appendix A we show that the noncommutative worldvolume theory of p coinciding D-

strings allows a fuzzy sphere solution and, expanding around it, we obtain precisely the

action (2.9) in the limit (2.10).

2.4 Hamiltonian

The canonical momenta Pr ≡ ∂L
∂ṙ , Pψ ≡ ∂L

∂ψ̇
and Π ≡ ∂L

∂Ḟtx
following from the action (2.9)

are given by:

Pr = µ1pe−Φ

√

g̃

g

(

1 + H1H5(r
′2 + r2ψ′2)

)

ṙ

Pψ = µ1pe−Φ

√

g̃

g

(

1 + H1H5(r
′2 + r2ψ′2)

)

r2ψ̇

Π = µ1

(

pe−Φ

√

g̃

g
Ftx +

Q5

π
(ψ − sin ψ cos ψ)

)

(2.11)

We can define the phase-space lagrangian density L as

L = ẋPx + ṙPr + ψ̇Pψ + ȦρΠ − L =
(

ẋPx + ṙPr + ψ̇Pψ + FtρΠ − L
)

− AtΠ
′ (2.12)

where we have done a partial integration in the second equality. The quantity in brackets

can be identified as the (improved) Hamiltonian density, while the second term imposes

the Gauss law constraint Π′ = 0 for the worldvolume gauge field. The quantization con-

dition (2.5) on the fundamental string charge fixes the the integration constant in this

equation in terms of q:

Π = qµ1.

Substituting in (2.12) and restricting attention to static configurations

Pr = Pψ = 0

one finds for the Hamiltonian

H = µ1

∫

dx

[

Q5

π

√

∆2
1 + ∆2

2 + ∆2
3

√

1

H1H5
+ r′2 + r2ψ′2 − p

gH1

]

. (2.13)
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Here, we have defined functions ∆1,∆2,∆3 that will reappear frequently in what follows:

∆1 ≡ sin ψ cos ψ − (ψ − q

Q5
π)

∆2 ≡ r2

r2
5

H5 sin2 ψ

∆3 ≡ p
π

gQ5

√

H5

H1
. (2.14)

We also record, for later use, the expression for the worldvolume electric field

Ftx =

√

1

H1H5
+ r′2 + r2ψ′2

∆1
√

∆2
1 + ∆2

2 + ∆2
3

. (2.15)

The total energy (2.13) is the sum of two competing contributions: the first term represents

the energy of a static string with variable tension

T (r, ψ) = µ1
Q5

π

√

∆2
1 + ∆2

2 + ∆2
3. (2.16)

The second term represents the Coulomb energy of p D-strings placed in the electric RR

potential C
(2)
el produced by the D-strings in the background. Both terms cancel precisely for

pure D1-string probes (q = 0, ψ = 0) placed parallel to the D1-strings in the background

(i.e. at constant r). This solution can be seen as the zero-energy ground state of the effective

string description. Turning on the fundamental string charge q amounts to turning on a

central charge in the worldvolume superalgebra, as we shall presently see, and leads to a

class of BPS-solutions that can be seen as worldvolume solitons. When the D1-charge p is

zero, the energy doesn’t contain the Coulomb contribution and a BPS bound on the energy

can be derived using standard methods [24]. We will comment on this special case later

on. When p 6= 0, the energy is not manifestly a sum of positive contributions, but we will

see that it is possible to rewrite it in an equivalent form suitable for deriving a BPS-type

bound.

2.5 BPS equations and gradient flow

The Hamiltonian leads to second order equations for r(x), ψ(x), which will reduce to a

first order system for BPS configurations. Some intuition can be gained by viewing the

Hamiltonian as an action functional describing geodesic motion of an effective particle

with a position dependent mass m(r, ψ) in a curved three dimensional space with metric

dl2 = 1
H1

dx2 + H5(dr2 + r2dψ2) in the presence of a gauge potential A = − p
gH1

dx:

H =
Q5

π
µ1

∫

dρ



m(r, ψ)

√

ẋ2

H1
+ H5(ṙ2 + r2ψ̇2) − pπ

gQ5H1
ẋ



 (2.17)

with

m(r, ψ) =

√

∆2
1 + ∆2

2 + ∆2
3

H5

– 8 –
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We have introduced an arbitrary parameter ρ on the worldline of the effective particle,

and denoted the ρ-derivative by a ˙, hopefully without causing confusion with the time

derivative (all configurations considered henceforth will be static). We recover the earlier

expression (2.13) after choosing ρ = x. We can write a classically equivalent system without

the square root by introducing an auxiliary einbein e(ρ) on the worldline:

H =
Q5

π
µ1

∫

dρ

[

1

2e

(

x′2

H1
+ H5(r

′2 + r2ψ′2)

)

+
e

2

∆2
1 + ∆2

2 + ∆2
3

H5
− pπ

gQ5H1
x′

]

Solving for for the einbein leads back to (2.17). This expression can, up to a boundary term,

be written as a sum as a sum of squares. This can be seen by using the definitions (2.14)

and observing that

∆2
1 + ∆2

2 = (∂r(rZ))2 + (∂ψZ)2

where we have defined a function Z as

Z ≡ sinψ − (ψ − q

Q5
π) cos ψ +

a

3

(

r

r5

)2

sin3 ψ (2.18)

The Hamiltonian can then be written as

H =
Q5

π
µ1

∫

dρ

[

1

2

(

√

H5

e
ṙ ±

√

e

H5
∂r(rZ)

)2

+
1

2

(

√

H5

e
rψ̇ ±

√

e

H5
∂ψZ)

)2

+
1

2eH1

(

ẋ − pπ

gQ5
e

)2

∓ d

dρ
(rZ)

]

(2.19)

The energy is bounded below by a total derivative, and configurations saturating the bound

will automatically obey the equations of motion. This gives the desired system of first order

BPS equations. The quantity Q5

π µ1rZ plays the role of a central charge in the worldvolume

superalgebra [26, 27, 22].

Let us first consider the case p 6= 0. It will be convenient to define dimensionless

parameters x̃, r̃ as

x̃ ≡ gQ5

pπr5
x; r̃ ≡ r

r5
.

Choosing ρ = x̃ in (2.19), the BPS equations reduce to e = r5 and

˙̃r = − 1

H5
∂r̃(r̃Z)

ψ̇ = − 1

H5r̃2
∂ψ(r̃Z). (2.20)

Here we have chosen the upper sign in (2.19) without loss of generality, as the equations

with the other sign choice are related by a reflection x̃ → −x̃. The equations describe a

gradient flow with potential function r̃Z on a space with metric H5(dr̃2 + r̃2dψ2). It will be

useful at times to change the independent variable to r̃ and obtain equations for x̃(r̃), ψ(r̃):

dx̃

dr
= − H5

∂r̃(r̃Z)

r̃
dψ

dr̃
=

∂ψZ

∂r̃(r̃Z)
. (2.21)
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The total energy of the solutions is

E =
Q5r5

π
µ1 [r̃Z]x̃i

x̃f
. (2.22)

We now turn to the case p = 0. In this case, we cannot choose ρ to be proportional to

x anymore. Instead, we can take ρ = r̃, and the BPS equations become

dx

dr
= 0

r̃
dψ

dr̃
=

∂ψZ

∂r̃(r̃Z)
. (2.23)

Comparing with (2.21), we see that the flows in the p = 0 case are simply the flows for any

p 6= 0 projected onto a surface of constant x.

2.6 Worldvolume geometry

We collect here for later convenience also the formulae for the worldvolume fields for BPS

solutions satisfying (2.20). Making use of the relation H1H5(r
′2 + r2ψ′2) =

∆2

1
+∆2

2

∆2

3

satisfied

by these solutions, the induced metric and the gauge field on the worldvolume can be

written as

dŝ2 = (H1H5)
−1/2

(

−dt2 +
∆2

1 + ∆2
2 + ∆2

3

∆2
3

dx2

)

+ (H1H5)
1/2r2 sin2 ψ

(

dθ2 + sin2 θdφ2
)

F = (H1H5)
−1/2 ∆1

∆3
dt ∧ dx + (H1H5)

1/2r2 sin2 ψ
∆3

∆2
sin θdθ ∧ dφ (2.24)

One easily derives the components of the open string metric go
µν = gµν −Fµρg

ρσFσν :

dŝ2
o =

∆2
2 + ∆2

3√
H1H5

(

− dt2

∆2
1 + ∆2

2 + ∆2
3

+
dx2

∆2
3

)

+

√
H1H5(∆

2
2 + ∆2

3)r
2 sin2 ψ

∆2
2

(

dθ2 + sin2 θdφ2
)

(2.25)

3. The near-horizon limit and attractor flows

We shall now discuss the solutions of the BPS equations (2.20) in the near-horizon limit

of the background geometry obtained by putting a = 0 in the equations above. It is

in this limit that the BPS flow equations most closely resemble the attractor flows for

supersymmetric black holes in N = 2 supergravity.

3.1 Flow equations

A first observation is that, in the near-horizon limit, the function Z depends on ψ alone:

Z = Z(ψ) = sin ψ −
(

ψ − q

Q5
π

)

cos ψ.

As we saw in (2.7), q is a ZQ5
valued charge and we will take 0 ≤ q < Q5 in what follows.

The function Z is then a positive function with a single minimum at ψ = q
Q5

π ≡ ψ∗ and

– 10 –
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Figure 1: (a) The function Z. (b) The potential V .

maxima at the boundary points ψ = 0, π (see figure 1(a)). It will be convenient to rewrite

the equations derived in the previous section in terms of a coordinate U defined as

r̃ ≡ eU .

Assuming p 6= 0, it is a consistent truncation to substitute the value e = r5, which solves

the equation of motion for x̃, into (2.19) as long as we impose the equation for e as a

constraint. Choosing again ρ = x̃, this truncated energy function takes the form:

H =
µ1Q5r5

2π

∫

dx̃
[

U̇2 + ψ̇2 + e2U (Z2 + ∂ψZ2)
]

=
µ1Q5r5

2π

∫

dx̃

[

(

U̇ ± ∂U (eUZ)
)2

+
(

ψ̇ ± ∂ψ(eUZ)
)2

]

± µ1Q5r5

π
[eUZ]x̃i

x̃f
(3.1)

It describes a particle moving on the (U,ψ) strip with flat metric in an inverted potential

V = −e2U (Z2 + ∂ψZ2) (see figure 1(b)). The constraint from the equation for e becomes

U̇2 + ψ̇2 − e2U (Z2 + ∂ψZ2) = 0. (3.2)

It states that the conserved total ‘energy’ of the effective particle is zero and can be imposed

as an initial condition. Choosing again the upper sign, the BPS equations are

U̇ = −∂U (eUZ) (3.3)

ψ̇ = −∂ψ(eUZ). (3.4)

Note that solutions to these equations obey the constraint (3.2). The energy is given by

E =
Q5r5

π
µ1

[

eUZ
]x̃i

x̃f
. (3.5)

3.2 Solutions

The system (3.3), (3.4) describes a gradient flow on the flat (U,ψ) strip with potential

function eUZ. The flow is directed towards the minimum of Z, since the second equation

implies that

Ż = −eU (∂ψZ)2 ≤ 0

– 11 –
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ψ
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Figure 2: (a) Gradient flows in the (−U, ψ) plane. The red line is the attractive fixed point,

the green lines are repulsive fixed points. (b) BPS trajectories ‘shoot for the top’ of the inverted

potential.

Hence there is an attractive fixed point at

ψ∗ =
q

Q5
π

where Z is minimal and takes the value Z∗ = sin q
Q5

π. The maxima of Z at ψ = 0 or π

represent repulsive fixed points. Furthermore, U is a decreasing function since U̇ = −eUZ ≤
0 and the flows will eventually end up at U∗ = −∞, corresponding to the ‘horizon’ r = 0

in Poincaré coordinates. The BPS solutions correspond to particle trajectories where the

initial conditions are tuned such that the particle reaches the top of the inverted potential

asymptotically. Figure 2 illustrates these aspects of the gradient flow.

In terms of the embedding of the fuzzy (p, q) string, these equations tell us that,

if we fix one endpoint of the string somewhere in AdS3 and specify some value of the

fuzzy radius at this point, while letting the other end ‘flap in the breeze’, the string will

eventually reach r = 0 at x = ∞, and the S2 radius will approach the value
√

r1r5Z∗. The

equations (3.3), (3.4) can also be solved exactly and we will now discuss the different types

of solutions in more detail. We are interested in complete flows where the string starts out

at the boundary of of AdS3 and not somewhere in the interior, which would be forbidden

by charge conservation. We will use translation invariance in the x-direction to make the

starting point at r = ∞ correspond to x = 0, which fixes the integration constant in (3.3).

We also note that the equations (3.3), (3.4) are invariant under changing ψ → π − ψ and

q → Q5 − q.

3.2.1 Attractive fixed point: AdS2 × S2 branes

Of special importance is the solution where ψ takes on the constant attractor value ψ∗

everywhere:

ψ = ψ∗

r̃ =
1

sin ψ∗x̃
(3.6)
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Generic solutions of (3.3), (3.4) approach this one for large x̃ and we will call this the

‘attractor solution’. The tension (2.16) for this solution is constant and given by

T attr
(p,q) = µ1

√

p2e−2φ +

(

Q5

π
sin

qπ

Q5

)2

The induced metric (2.24) for this solution is AdS2 × S2, and we will see in section 5 (see

also [14]) that it is 1/2-BPS, preserving 4 out of 8 Poincaré supercharges and 4 out of

8 conformal supercharges of the near-horizon background. In the induced metric on the

worldvolume (2.24), the radii of the S2 and AdS2 factors are different and given by

RAdS2
= L

T attr
(p,q)

T attr
(0,q)

; RS2 = LZ∗ (3.7)

with L ≡ √
r1r5. An interesting feature of the attractor solution is that, in the open string

metric (2.25), the S2 and AdS2 radii become equal and are given by

Ro
AdS2

= Ro
S2

= L

√

T attr 2
(p,q) sin2 ψ∗ + T attr 2

(p,0) cos2 ψ∗

T attr
(0,q)

. (3.8)

This property is consistent with an argument made in the S-dual system in [15].

3.2.2 Repulsive fixed point: AdS2 branes

Another special solution to the equations (3.3), (3.4) which deserves to be mentioned is

obtained by taking ψ to be constant and equal to 0 or π, the maxima of Z. These solutions

correspond to the repulsive fixed points of the flow equations, and small supersymmetric

deformations cause the flow to move away from them and end up at the attractive fixed

point. One could also wonder whether these solutions are physical, since the S2 fiber has

collapsed to a point and it is not clear whether the D3-brane description is still reliable.

Nevertheless, in the description as a noncommutative theory on coinciding D-strings, they

simply correspond to the solution with commuting matrices discussed in appendix A, and

that formulation should be reliable. In section 4, we shall show that these solutions arise

as ‘spikes’ on a D3-brane in the limit that the D3-brane is moved away to infinity. These

observations suggest that we should not discard these solutions. The ψ = 0 solution has

the tension (2.16) of a (p, q) string in flat space

T(p,q) = µ1

√

p2e−2φ + q2

(for ψ = π we have to replace q by Q5 − q). The radial coordinate is given by

r̃ =
1

ψ∗

1

x̃
(3.9)

and the resulting worldvolume geometry is AdS2, with the radius in the induced and open

string metrics given by

RAdS2
= L

T(p,q)

T(0,q)
Ro

AdS2
= L

T(p,0)

T(0,q)
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These solutions can be shown to preserve half of the near-horizon supersymmetries as

well [14].

These solutions represent a (p, q) string which has not expanded to form a D3-brane.

The situation is reminiscent of the case of giant gravitons [28, 29], where there are also

different supersymmetric solutions representing expanded and non-expanded configurations

carrying the same charges. This is perhaps not so surprising, since the coupling which allows

the two-sphere to be stabilized in our case (i.e. the coupling of the electric worldvolume

field to the RR background) is T-dual to the coupling allowing giant gravitons to expand

(i.e. the coupling of an angular momentum to the RR background).

3.2.3 General flows

The general solution to the flow equations (3.3), (3.4) is

ψ = ψ∗ +
1

C1x̃ + C2

r̃ = C1
ψ − ψ∗

sin ψ
(3.10)

The solution breaks scale and translation symmetry of the background, and solutions with

different values of the integration constants C1, C2 are related by the action of these broken

generators. The initial condition that r = ∞ at x̃ = 0 fixes the constant C2 in (3.10). We

see from (3.10) that the flows must start at either ψ = 0 or ψ = π. Due to the above

mentioned symmetry ψ → π − ψ, q → Q5 − q we can restrict attention to flows starting

at ψ = 0. These have C2 = −1/ψ∗, C1 negative and ψ ≤ ψ∗ everywhere. The constant

C1 represents the value of r sin ψ at the boundary of AdS3 and can be interpreted as an

asymptotic modulus. As we will see in section 5, the generic solution is 1/4 BPS, preserving

4 out of the 16 real supercharges of the near-horizon region. It preserves half of the Poincaré

supersymmetries but breaks all of the conformal ones. A plot of various flows in coordinate

space is shown in figures 3(a) and 5(a).

The attractor solution (3.6) and the repulsive solution (3.9) are obtained in the limits

C1 → −∞, C1 → 0 respectively, where scale invariance is restored. Hence we see that

the general 1/4 BPS flows represent worldvolume solitons that interpolate between the

1/2 BPS repulsive solution at x̃ = 0 and the 1/2 BPS attractor solution at x̃ = ∞. The

tension (2.16) also interpolates between T(p,q) and T attr
(p,q) as shown in figure 4.

The energy of the solutions can be read off from (3.5). Since eUZ becomes zero for

x̃ → ∞ it is given by

E =
µ1Q5r5

π
[eUZ]|x̃=0

The energy is divergent due to the fact that the string stretches all the way to the boundary

of AdS3. The variable ψ approaches zero near the boundary and introducing a cutoff at a

small value of ψ we find

E =
µ1Q5

π
lim
ψ→0

r(ψ) (sinψ − (ψ − ψ∗) cos ψ)

= qµ1 lim
ψ→0

r(ψ) (3.11)
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(a) (b)

r̃ cos ψ r̃ cos ψ

r̃ sin ψ r̃ sin ψ

x̃ x̃

Figure 3: Flow plots in (r̃ cosψ, r̃ sinψ, x̃) coordinates. Each brane configuration forms a ‘tube’

whose cross-section is an S2, represented by two points on opposite sides of the r̃ sinψ axis. The

vertical blue line represents the D1-D5 string in the background. (a) Solutions in the near-horizon

geometry: the black curve denotes a generic flow, while the green and red curves represent the

repulsive and attractive fixed point solutions with ψ = 0 and ψ = ψ∗ respectively. (b) Solutions

in the full geometry: the generic solution represents a (p, q) string ‘spike’ ending on a D3-brane

transverse to the D1-D5 string in the background. The attractive and repulsive fixed point solutions

arise from the limits where the transverse distance of the D3-brane is taken to zero or infinity

respectively.

We see that the energy is equal to the energy of q fundamental strings stretched along

the radial direction, perpendicular to the D1-D5 string in the background. We note in

particular that the regularized energy doesn’t depend on the asymptotic modulus C1 and

the solutions are degenerate in this sense. The D-string charge p doesn’t enter into the

expression for the energy because a D-string probe is mutually BPS with the branes in the

background.

Let us also comment on the solutions with zero D1-charge p = 0, which, as we saw

in (2.23), are obtained by projecting the p 6= 0 solutions onto a surface of constant x,

as illustrated in figure 5(a). The BPS equation (2.23) is the same one that arises in the

description of D3-branes with electric field in a D5-brane background and has been studied

in the literature before [24]. It is a special case of a class of generalized ‘baryon vertex’

solutions that were studied in [20 – 23]. It was observed in these works that such solutions

approach a special solution where the angle ψ is constant. We can now reinterpret this

property as a special (albeit less transparent) case of the attractor mechanism. It would

be interesting to study the question of supersymmetry enhancement at the attractor point

in these examples.

Our discussion of the solutions has been entirely in the Poincaré patch, and it would

be interesting to study how the geometry extends into global AdS3 in more detail. While

both the attractive and repulsive fixed point solutions represent static configurations with
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Figure 4: The tension of a generic flow solution (black line) interpolates between the tension of

the repulsive fixed point (green line) and attractive fixed point (red line) solutions.

respect to global time, this no longer the case for the general solution which will interpolate

between the two in a time dependent manner.

3.3 ‘Entropy’ function

For attractor black holes, the attractor geometry where the moduli take their constant

fixed-point values can also be derived by extremizing an entropy function [11], which, at

the minimum, coincides with the physical entropy of the black hole. In our open string

example, a similar role is played by the energy function (2.19) evaluated for an ansatz

where the worldvolume geometry is AdS2 × S2. Extremizing this function yields the value

of the AdS2 and S2 radii in terms of the charges, as we shall presently illustrate. It’s

not clear whether it can be related to an entropy contained in the open string degrees of

freedom, which is one of the main questions raised by our example.

We start by defining new target space coordinates V1, V2:

V1 =
√

1 + (ux)2

V2 = sin ψ

with u ≡ r
L2 , L ≡ √

r1r5. If (V1, V2) take on constant values (v1, v2), the induced world-

volume metric is AdS2 × S2:

dŝ2 = L2

[

−u2dt2 +
v2
1

u2
du2 + v2

2(dθ2 + sin2 θdφ2)

]

.

Hence v1 and v2 are the radii of AdS2 and S2 in units of L. In analogy with the entropy

function for black holes, we define the entropy function F (v1, v2; p, q) to be the Hamiltonian

density (2.19) evaluated at constant values of the scalar fields V1, V2:

H ≡
∫

duF (v1, v2; p, q).

One finds

F (v1, v2; p, q) = L2

[

T (v2)v1 − T attr
(p,0)

√

v2
1 − 1

]
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where T is the tension given in (2.16). Extremizing the entropy function gives the correct

values for v1, v2 at the attractor point. The variation with respect to v2 tells us to extremize

the tension and determines

v2 = sin ψ∗.

Variation with respect to v1 yields

v1 =
T attr

(p,q)

T attr
(0,q)

in agreement with the earlier result (3.7). We note that the value of the entropy function

at the minimum is independent of the probe D1-charge and is given by

F = L2T attr
(0,q).

In the case of attractor black holes, the entropy function formalism greatly facilitates

finding the attractor solution in the presence of higher derivative corrections [11], and it

would be interesting to see if the same is true here.

3.4 Comparison with the attractor mechanism for black holes

The attractor mechanism described above is remarkably similar to the familiar attractor

mechanism governing supersymmetric black holes in N = 2 supergravity theories with

vector multiplets [1 – 3]. Let us pause for a moment to identify similar quantities appearing

in both systems.

Spherically symmetric attractor black holes in N = 2 supergravity theories are de-

scribed by an effective particle action and constraint of the form (3.1), (3.2) [30, 31]. The

flow equations that describe the evolution of the spacetime metric and the moduli take the

form of a gradient flow analogous to (3.3), (3.4):

U̇ = −∂U (eU |Z|)
ża = −gab̄∂b̄(e

U |Z|). (3.12)

Here, the function U appears in the metric ansatz ds2 = −e2Udt2 + e−2Udx2, the za are

complex vector multiplet moduli and gab̄ is the moduli space metric. The flow parameter

is proportional to the inverse of the radial coordinate. The function Z is the gravipho-

ton charge, which plays the role of the central charge in the N = 2 superalgebra. The

equations describe a flow towards a minimum of Z, which becomes proportional to the

black hole horizon radius. General solutions interpolate between the Minkowski vacuum at

asymptotic infinity and an attractor solution where the moduli take on constant values and

the geometry is the AdS2 × S2 Bertotti-Robinson solution near the horizon. The general

solution preserves 4 supersymmetries and interpolates between maximally supersymmetric

vacua that preserve all 8 supersymmetries. The attractor geometry can also be derived

from extremizing an ‘entropy function’ whose value at the extremum is the black hole

entropy.

It’s easy to draw parallels with our open string example. The variable U is now

related to the time component of the induced worldvolume metric: ĝtt ∼ −e2U . The vector
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multiplet moduli are replaced in our example by a single real field ψ, which is related to

the size of the S2 fiber. The role of the graviphoton charge is played by the real, positive

function Z, which, at its minimum, is proportional to the size of the S2.2 General flows

preserve 4 supersymmetries and interpolate between solutions where the supersymmetry is

enhanced to 8 supercharges: at infinity, an AdS2 geometry where the S2 has collapsed, and

near r = 0, an AdS2 × S2 geometry. The latter ‘attractor solution’ can also be obtained

by extremizing an ‘entropy’ function as we saw in the previous paragraph.

4. Solutions in the asymptotically flat background

We now describe how the above solutions extend to the full, asymptotically flat D1-D5

geometry. This will help clarify the interpretation of our brane solutions as intersecting

D3-brane ‘spike’ configurations embedded in the D1-D5 background. It will also provide

a physical interpretation of the asymptotic modulus C1 encountered in the near-horizon

solution (3.10).

The BPS equations are now given by (2.20) for a = 1 and can still be solved analytically.

For this, it’s convenient to switch to ψ as the independent variable and solve for r̃(ψ), x̃(ψ).

The general solution satisfies

r̃ sin ψ = C1(ψ − ψ∗ − ar̃2 sin ψ cos ψ)

x̃ =
1

r̃ sin ψ
− C2

C1
(4.1)

with C1, C2 integration constants that reduce to the previously introduced ones (3.10) in

the a → 0 limit. The first equation is a quadratic equation for r̃ and the solutions consist

of two branches:

r̃± = − 1

2aC1 cos ψ

[

1 ±
√

1 + 4aC2
1 (ψ − ψ∗) cot ψ

]

The two branches join at the point where the argument of the square root becomes zero.

In the near horizon limit a → 0, only the − branch survives. The full solution describes a

curve starting out at ψ = π/2, r = ∞ in the asymptotically flat region and approaching

the solutions of the previous section near r = 0. One should note that, near r = ∞, the

radius of the S2 grows like r2 and the solution approaches a flat D3-brane transverse to

the D1-D5 string in the background. The transverse distance ∆Y between the D3-brane

and the D1-D5 string is given by the limiting value of r cos ψ as ψ approaches π/2 and is

related to the integration constant C1, which played the role of an asymptotic modulus in

the near-horizon region:

∆Y = lim
ψ→π/2

|r cos ψ| = 1/|C1|.

The general solution can be interpreted as a (p, q) string running between this D3-brane

and the D1-D5 string in the background. This is illustrated in figures 3(b) and 5(b). The

2One should note however that the function Z is not quite the same as the worldvolume central charge,

which is instead given by e
U

Z.
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(a) (b)

r̃ cos ψ r̃ cos ψr̃ sin ψ r̃ sin ψ

x̃ x̃

r̃ cos ψ r̃ cos ψ

r̃ sin ψ r̃ sin ψ

Figure 5: A sampling of flow solutions plotted in coordinate space (a) in the near-horizon region

and (b) in the full geometry. The upper figure shows the flows projected to the (r̃ cosψ, r̃ sin ψ)

plane (as appropriate for the solutions with vanishing D1-charge p = 0). The red curve represents

the attractor solution, the green curves are the repulsive fixed point solutions with ψ = 0 and

ψ = π.

energy (2.22) of the solutions contains a divergent term as well as a finite one:

E =
4πµ3

g
lim

ψ→π/2

[

(r(ψ) sin ψ)3

3
+ r2

5(r(ψ) sin ψ)

]

+ (
Q5

2
− q)µ1∆Y.

The divergent term is the energy of a flat D3-brane transverse to the D1-D5 string cut

off at a large radius rf = r sinψ: µ3

∫

e−Φ√−g = 4πµ3

g

∫ rf

0 drr2(1 + (r5/r)
2). The finite

term represents the energy of Q5

2 − q fundamental strings stretched over a distance ∆Y

perpendicular to the D1-D5-string.

We can also identify the solutions that reduce to the attractive and repulsive fixed

points in the near-horizon region. These are obtained by taking C1 → ∞ and C1 → 0

respectively and correspond to putting the D3-brane at r = 0 or r → ∞. Let’s start with

the latter case, where the D3-brane has moved off to infinity, leaving behind a (p, q) string

with the S2 shrunk to zero size. The explicit solution reads

ψ = 0 x =
r2
5p

gq

1

r
− a

p

gq
r + C Ftx =

gq

pH5
(4.2)
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(0,q)

(p,0)

(p,q)

α

Figure 6: The string junction described in the text. The blue line represents the D1-D5 string in

the background, and the green line shows the bending of the full solution (4.2).

It’s interesting to look at the large r behaviour:

x ∼ − p

gq
r + C

Ftx ∼ gq

p

This is precisely the solution, in the flat space approximation, of a (p, q) string impinging

on the D1-D5 string in the background, reaching it at an angle α with tan α = g q
p [32, 33].

This configuration would arise as the third leg of a three string junction consisting of p

D-strings parallel to the D1-D5 string and q fundamental strings orthogonal to it, joining

up at x = C, as shown in figure 6. The full solution shows the bending or ‘kinkiness’ [34]

under the influence of the D1-D5 string in the background, moving the junction point off

to infinity and leaving only one leg visible. Hence we can see this solution as the result of

placing a (p, q) string junction in the D1-D5 background. For the general solutions (4.1) a

similar interpretation holds, the only difference being that the (p, q) string leg ends on a

D3-brane in these cases.

The solution extending the attractor solution in the near-horizon limit is obtained by

moving the D3-brane to r = 0. The solution becomes

r̃ =

√

∣

∣

∣

∣

ψ − ψ∗

sin ψ cos ψ

∣

∣

∣

∣

x̃ =

√

∣

∣

∣

∣

cot ψ

ψ − ψ∗

∣

∣

∣

∣

5. Supersymmetry analysis

In this section we show that the BPS equations (2.20) can alternatively be derived from

the requirement of supersymmetry. The full supergravity background preserves 8 real

‘Poincaré’ supercharges, while in the near horizon region there are an additional 8 real

‘conformal’ supercharges. We will show that the BPS D-brane solutions discussed above

also display the phenomenon of supersymmetry enhancement: near r = 0, supersymmetry

is enhanced from 4 Poincaré supersymmetries preserved by the generic solution to include

an extra 4 conformal supersymmetries preserved by the attractor solution.
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A supersymmetry of the background is preserved in the presence of a bosonic D-brane

configuration if it can be compensated for by a κ-symmetry transformation [35, 26]. This

can be expressed as a projection equation

(1 − Γκ)ǫ = 0 (5.1)

where Γκ (satisfying trΓκ = 0, Γ2
κ = 1) is the operator entering in the κ-symmetry trans-

formation rule on the D-brane and ǫ is a general Killing spinor of the background pulled

back to the world-volume.

The Poincaré Killing spinors of the background can be written as (see appendix B for

a derivation in our conventions)

ǫ = (H1H5)
−1/8R(ψ, θ, φ)ǫ0 (5.2)

where R(ψ, θ, φ) is a rotation

R(ψ, θ, φ) = e
π
2
−ψ

2
Γθφσ1

e
π
2
−θ

2
Γψφσ1

e
φ

2
Γψθσ1

.

The spinor ǫ0 is constant on the six-dimensional space, covariantly constant on M and

satisfies the projection equations

(

1 + Γtxσ1
)

ǫ0 = 0
(

1 − Γrψθφσ1
)

ǫ0 = 0 (5.3)

The operator Γκ entering in (5.1) depends on the embedding of the D3-brane in the

background as well as on the worldvolume gauge field. As before, we take the worldvolume

coordinates to be (t, x, θ, φ). Imposing SU(2) symmetry as discussed in section 2, the

induced worldvolume metric on a static D3-brane is

dŝ2 = −(H1H5)
−1/2dt2 +

[

(H1H5)
−1/2 + (H1H5)

1/2(r′2 + r2ψ′2)
]

dx2

+r2(H1H5)
1/2 sin2 ψ(dθ2 + sin2 θdφ2).

where a prime denotes a derivative with respect to x. The form of the worldvolume gauge

fields is restricted by fixing the (p, q) charge and was given in the expressions (2.8), (2.15).

In terms of the vielbein for the above induced metric the gauge fields read

F =
∆1

√

∆2
1 + ∆2

2 + ∆2
3

et̂ ∧ ex̂ +
∆3

∆2
eθ̂ ∧ eφ̂

We use an index convention where a hatted index denotes a pullback to the worldvolume

and orthonormal frame indices are underlined. The κ-operator Γκ is then [35, 26]

Γκ = e−Φ0Γt̂x̂σ3−Φ1Γ
θ̂φ̂σ3

Γt̂x̂θ̂φ̂iσ2

with Φ0, Φ1 defined by

tanh Φ0 =
∆1

√

∆2
1 + ∆2

2 + ∆2
3

; tan Φ1 =
∆3

∆2
.

– 21 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
5

The pulled-back gamma matrices are related to the 10-dimensional ones as

Γt̂x̂ =
1

√

1 + (H1H5)(r′2 + r2ψ′2)

(

Γtx + (H1H5)
1/2r′Γtr + (H1H5)

1/2rψ′Γtψ

)

Γθ̂φ̂ = Γθφ

Requiring Γκǫ = ǫ with ǫ given in (5.2) for all values of θ and φ leads to two equations

which can be summarized as
(

1 − esΦ0Γsσ3

e−Φ1Γθφσ3

ΓsΓ
θφiσ2

)

es
π
2
−ψ

2
Γθφσ1

ǫ0 = 0 (5.4)

where we defined the operator Γs

Γs =
1

√

1 + H1H5(r′2 + r2ψ′2)

(

Γtx + (H1H5)
1/2r′Γtr + s(H1H5)

1/2rψ′Γtψ

)

and s can be 1 or −1. Some algebraic manipulations reduce the equations (5.4) to the

following system

(H1H5)
1/2∆3rψ

′ = ±[cos ψ∆2 − sin ψ∆1]

(H1H5)
1/2∆3r

′ = ±[sin ψ∆2 + cos ψ∆1]

(1 ± Γtψσ3)ǫ0 = 0 (5.5)

The first two equations are identical to (2.20), as one can see by making use of

∂r(rZ) = sin ψ∆2 + cos ψ∆1

∂ψZ = cos ψ∆2 − sin ψ∆1

The projector in (5.5) commutes with (5.3), showing that the solutions preserve 4 out of

the 8 Poincaré supersymmetries. Note that the solutions with different sign choices in (5.5)

are not mutually BPS.

We now proceed to verify whether, in the near horizon limit a = 0, any of the solu-

tions preserve some of the enhanced conformal supersymmetries. These are given by (see

appendix B for details):

ǫ̃ =

(

1√
u

+
√

u(tΓtu − xΓxu)

)

R(ψ, θ, φ)ǫ̃0 (5.6)

where we defined a rescaled radial coordinate u ≡ r
r1r5

. The spinor ǫ̃0 is constant on

AdS3 × S3, covariantly constant on M and satisfies the projection equations
(

1 − Γtxσ1
)

ǫ̃0 = 0
(

1 + Γrψθφσ1
)

ǫ̃0 = 0. (5.7)

We look for solutions of (1 − Γκ)ǫ̃ = 0, where Γκ is as in (5.1) with a put to zero in the

harmonic functions. In particular, the pulled-back gamma matrices are

Γt̂x̂ =
1

√

1 + 1
u4 (u′2 + u2ψ′2)

(

Γtx +
u′

u2
Γtu +

1

u
ψ′Γtψ

)

Γθ̂φ̂ = Γθφ
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Since the background Killing spinor ǫ̃ is time dependent and we are looking for static

solutions of (1 − Γκ)ǫ̃ = 0, the only possibility is for the coefficient of t in this equation to

vanish separately. This leads to two equations

(1 − Γκ)ΓtuR(ψ, θ, φ)ǫ̃0 = 0 (5.8)

(1 − Γκ)(Γtu − uxΓtx)ΓtuR(ψ, θ, φ)ǫ̃0 = 0 (5.9)

Making use of the properties of ǫ̃0 in (5.7), one can show that the first equation leads to the

equations we had before in (5.5), with ǫ0 replaced by ǫ̃0. If these are satisfied, the second

equation becomes equivalent to

[Γt̂x̂, (Γtu − uxΓtx)]ΓtuR(ψ, θ, φ)ǫ̃0 = 0. (5.10)

The commutator equals

[Γt̂x̂, (Γtu − uxΓtx)] =
2

√

1 + 1
u4 (u′2 + u2ψ′2)

(

(1 +
xu′

u
)Γxu +

ψ′

u
Γψu − xψ′Γψx

)

.

The equation (5.10) requires det[Γt̂x̂, (Γtu − uxΓtx)]2 = 0 which leads to

(1 +
xu′

u
)2 +

(

ψ′

u

)2

+ (xψ′)2 = 0.

Hence we see that the solutions preserving conformal supersymmetries have to satisfy

1 +
xu′

u
= 0

ψ′ = 0.

This singles out the attractor solution found in (3.6). It preserves 4 extra conformal

supersymmetries specified by the projection

(1 ± Γtψσ3)ǫ̃0 = 0.

The supersymmetry preservation of the attractor solution was studied before in [14].

6. S-dual solutions

The solutions of in sections 3), (4 can of course be transformed to solutions in different

duality frames for the background 2-charge system. Of special interest is the S-dual F1-

NS5 background composed of fundamental strings and Neveu-Schwarz fivebranes. This

background can, in the near-horizon region, be described as an exact conformal field theory

on the SL(2, R) × SU(2) Wess-Zumino-Witten model at level Q5. We will now describe

how our solutions transform under S-duality.
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The background geometry transforms into

e−Φ′

= eΦ =
1

g′

(

H1

H5

)1/2

; g′ = 1/g

ds′2 = e−Φds2 = g′
[

(H1)
−1(−dt2 + dx2) + H5(dr2 + r2dΩ2

3) +

(

H1

H5

)

ds2
M

]

B′(2) = C(2) =
g′

H1
dt ∧ dx + g′r2

5(ψ − sin ψ cos ψ) sin θdθ ∧ dφ (6.1)

The transformed D3-brane solutions have an induced metric given by dŝ′2 = e−Φdŝ2,

while the equations of motion and the Bianchi identities for the worldvolume gauge field

are reversed [38 – 40]:

F ′ = ⋆K

⋆ K ′ = −F (6.2)

where K is defined as

Kµν ≡ 1

µ3

√

− det Ĝ

δS

δFµν
.

The charge quantization conditions (2.5), (2.6) then imply

q =
µ3

µ1

∫

S2

F ′

p = −µ3

µ1

∫

S2

⋆K ′.

These are the usual quantization conditions for a (D1, F1) = (q, p) string in the F1-NS5

background [8, 41]. The fact that, in the near-horizon limit, q is a ZQ5
-valued charge is

also well-established in this case [42 – 45]. Applying the transformation (6.2) one finds

F ′
θφ = − qµ1

4πµ3
sin θ

F ′
tx = 0

Defining L′2 = Q5α
′, the induced metric and the gauge-invariant field strength F = F + B

become

dŝ2 =
g′

H1

(

−dt2 +
∆2

1 + ∆2
2 + ∆2

3

∆2
3

dx2

)

+ L′2∆2

(

dθ2 + sin2 θdφ2
)

F =
g′

H1
dt ∧ dx − L′2∆1 sin θdθ ∧ dφ. (6.3)

For the open string metric go
µν = gµν −Fµρg

ρσFσν , one finds:

ds2
o =

g′(∆2
1 + ∆2

2)

H1

(

− dt2

∆2
1 + ∆2

2 + ∆2
3

+
dx2

∆2
3

)

+
L′2(∆2

1 + ∆2
2)

∆2

(

dθ2 + sin2 θdφ2
)

(6.4)
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To evaluate these formulas, one has to use the definitions (2.14) together with the

solutions (3.10) or (4.1). For example, one easily checks that, in the near-horizon limit, the

attractor solution is AdS2 × S2 with radii in the induced metric given by given by

RAdS2
= L′

T ′attr
(q,p)

T ′attr
(q,0)

; RS2 = L′Z∗ (6.5)

where we defined

T ′attr
(q,p) ≡ µ1

√

p2 + (
Q5

π
sin

pπ

Q5
)2e−2Φ′ .

In the open string metric (2.25), the radii become equal to the radius of the background

geometry:

Ro
AdS2

= Ro
S2

= L′. (6.6)

This particular solution was first studied in [15] and the above agrees with the results

obtained there.

7. Discussion

In this paper we have discussed a simple example of a supersymmetric attractor mecha-

nism in an open string setting. We found many similarities with the well-known attractor

mechanism for supersymmetric black holes. This raises quite a few questions to which we

have not given a satisfactory answer.

An obvious (but perhaps naive) question is whether, like in the case of black holes, the

physics underlying the attractor mechanism is related to a microscopic entropy carried by

open string degrees of freedom. A better understanding of the connection between the open

string attractor mechanism and the open string version of the OSV conjecture, proposed

in [9] in a different setting, could shed light on this issue.

Another question concerns the generalization of the mechanism to other backgrounds

and the identification of the general conditions under which it occurs. As in the closed

string case, one would expect a close relation to the mechanism for open string moduli

stabilization which was discussed in [7]. As remarked in the Introduction, one would also

not expect the mechanism to be restricted to supersymmetric cases.

For black holes, special geometry plays an important role in the attractor mechanism.

It would be useful to gain more insight in the supersymmetric geometry underlying the

attractor mechanism in the present example. This would require a better understanding of

the how the superconformal symmetry algebra of the background gets realized nonlinearly

on the D3-brane worldvolume. One of the quantities for which we would like to have a

better interpretation is the function which we called Z and which controls the attractor

flow.

After S-dualizing, we found brane solutions in the near-horizon limit of the F1-NS5

background. These should be describable as boundary states which cannot be obtained

by tensoring together SL(2, R) and SU(2) boundary states, and it would be interesting to

obtain these.
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And finally, our attractor flow solutions in the near-horizon limit of the D1-D5 system

merit an interpretation from the point of the dual CFT. All solutions run to the boundary

of AdS3, which they intersect in a line. Hence they should correspond to line defects in the

CFT, generalizing the ones studied in [46]. Similar branes in the AdS5 × S5 background

were given a dual CFT interpretation as Wilson lines in an antisymmetric representation

in [47, 48]. It would also be of interest to construct the ‘bubbling’ solutions incorporating

backreaction.
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A. Description as fuzzy (p, q) strings

Our D3-brane configurations have, in a certain regime of the parameters, an equivalent de-

scription as (p, q) strings expanded to form a D3 brane on a fuzzy S2. We will now describe

this version of the Myers effect and show that, in the relevant regime, the solutions arise

from the noncommutative worldvolume theory for p D-strings in the D1-D5 background.

We start by introducing auxiliary Cartesian coordinates Y i, i = 1, 2, 3 satisfying the

constraint
∑

i(Y
i)2 = 1 such that the volume element on the S2 can be written as

sin θdθ ∧ dφ =
1

2
ǫijkY

idY j ∧ dY k.

We now consider Myers’ action [25] for p D-strings in the given background. We choose a

static gauge where the worldvolume is parametrized by t, x. The worldvolume fields now

become p× p matrices. We will restrict attention to static configurations, starting from an

ansatz of the form

Ftx = Ftx(x)1p×p

r = r(x)1p×p

Ψ = ψ(x)1p×p.

Furthermore, we take Y i to be arbitrary constant matrices satisfying the constraint
∑

i(Y
i)2 = 1. The latter can be implemented by introducing a (matrix-valued) Lagrange

multiplier λ. The multi-D1 brane action at leading order then takes the form [25]

S = −µ1Tr

∫

dtdx
[

e−Φ
√

− det(P [Gab] + Fab)
√

det Qi
j

+C
(2)
tx +

i

2πα′
iY iY C(2)Ftx + λ(

∑

i

(Y i)2 − 1)
]

(A.1)
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where

√

− det(P [Gab] + Fab) =
√

(H1H5)−1 + r′2 + r2ψ′2 − F 2
tx

√

det Qi
j = 1 − H1H5r

4 sin4 ψ

4(2πα′)2

∑

i,j

[Y i, Y j]2

iY iY C(2) =
r2
5

2g
(ψ − sin ψ cos ψ)ǫijkY

i[Y j, Y k]

The equations of motion for the matrices Y following from this action are

0 =
1

g

√

H5

H1

√

(H1H5)−1 + r′2 + r2ψ′2 − F 2
tx

H1H5r
4 sin4 ψ

(2πα′)2

∑

j

Y j [Y i, Y j ]

+
3ir2

5

4πα′g
(ψ − sinψ cos ψ)ǫijk[Y

j, Y k]Ftx + 2λY i (A.2)

When the Y ’s are taken to form a fuzzy two-sphere, [Y i, Y j] ∼ iǫijkY
k, one sees that

each term in this equation is proportional to Y i. Hence the equation is trivially solved

by adjusting the Lagrange multiplier. In other words, the variation of the action around

a fuzzy sphere configuration is proportional to
∑

Y iδY i and vanishes for variations on

the constraint surface. The necessary ingredients that went into this are the fact that the

auxiliary Y i-space is flat, and that the background magnetic potential C
(2)
magn is constant

over the S2.

In terms of matrices ti in the p-dimensional irreducible representation of SU(2), satis-

fying [ti, tj ] = −iǫijkt
k, the Y ’s are

Y i =
2

√

p2 − 1
ti.

Substituting into the action (A.1) leads to

S = −pµ1

∫

dtdx

[

1

g

√

H5

H1

√

(H1H5)−1 + r′2 + r2ψ′2 − F 2
tx

(

1 +
2H1H5r

4 sin4 ψ

(p2 − 1)(2πα′)2

)

+
r2
1

gH1
+

Q5
√

p2 − 1π
(ψ − sin ψ cos ψ)Ftx

]

.

We see that this expression agrees with (2.9) for static configurations in the large p limit

when
H1H5r

4 sin4 ψ

p2(α′π)2
≪ 1.

The equations (A.2) also allow for a solution where the the Y i are commuting, forcing

the Lagrange multiplier λ to be zero. This represents a (p, q) string which has not expanded

into a fuzzy 2-sphere. The existence of solutions for both expanded and non-expanded

configurations is similar to the case of giant gravitons [28, 29].
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B. Killing spinors

In this appendix we derive the form of the Killing spinors in the D1-D5 background. We

follow the conventions of [49], in which the type IIB gravitino and dilatino variations (for

vanishing H, F (1), F (5)) are given by

δλ =

[

1

2
ΓM∂M − 1

4
eΦF/ (3)σ1

]

ǫ

δΨM =

[

∇M +
1

8
eΦF/ (3)ΓMσ1

]

ǫ.

Here, ǫ is a doublet of chiral spinors in 10 dimensions with chirality Γ(11)ǫ ≡ Γ0...9ǫ = −ǫ.

The vanishing of the dilatino variation in the background (2.1) imposes the following

projection equations:

(

1 + Γtxσ1
)

ǫ = 0
(

1 − Γrψθφσ1
)

ǫ = 0

where we use underlined indices to denote orthonormal frame indices. This projects the

number of independent real components of ǫ down to 8. The near-horizon background

a = 0 allows extra solutions which give rise to 8 enhanced supersymmetries and which will

be discussed below.

The vanishing of the gravitino variation determines the coordinate dependence of ǫ.

The components on the internal manifold M lead to the condition the ǫ is covariantly

constant with respect to the Ricci-flat metric on M. The 6-dimensional components have

the solution

ǫ = (H1H5)
−1/8R(ψ, θ, φ)ǫ0 (B.1)

where R(ψ, θ, φ) is a rotation

R(ψ, θ, φ) = e
π
2
−ψ

2
Γθφσ1

e
π
2
−θ

2
Γψφσ1

e
φ

2
Γψθσ1

.

The spinor ǫ0 is constant in 6 dimensions, covariantly constant on M and satisfies the

projection equations Γtxσ1ǫ0 = −ǫ0, Γrψθφσ1ǫ0 = ǫ0.

In the near-horizon limit a = 0, the dilatino equation allows extra solutions ǫ̃ satisfying

(

1 − Γtxσ1
)

ǫ̃ = 0
(

1 + Γrψθφσ1
)

ǫ̃ = 0

The gravitino equations then lead to the following form of these enhanced supersymmetries:

ǫ̃ =

(
√

r1r5

r
+

√

r

r1r5
(tΓtr − xΓxr)

)

R(ψ, θ, φ)ǫ̃0 (B.2)

where ǫ̃0 is constant on AdS3 × S3, covariantly constant on M and satisfies the projection

equations Γtxσ1ǫ̃0 = ǫ̃0, Γrψθφσ1ǫ̃0 = −ǫ̃0.
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